
IMPA1 Polyclonal Antibody

Catalog No. E-AB-18668

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description	
Reactivity	Human, Mouse, Rat
Immunogen	Fusion protein of human IMPA1
Host	Rabbit
Isotype	IgG
Purification	Antigen affinity purification
Conjugation	Unconjugated
Buffer	PBS with 0.05% NaN3 and 40% Glycerol,pH7.4
Applications	Recommended Dilution
WB	1:500-1:2000
IHC	1:25-1:100
Data	

Western blot analysis of Human cerebrum tissue lysate using IMPA1 Polyclonal Antibody at dilution of 1:360 Observed Mw:Refer to figures Calculated Mw:30 kDa

Immunohistochemistry of paraffin-embedded Human liver cancer tissue using IMPA1 Polyclonal Antibody at dilution of 1:25(×200)

Immunohistochemistry of paraffin-embedded Human esophagus cancer tissue using IMPA1 Polyclonal Antibody at dilution of 1:25(×200)

Preparation & Storage

For Research Use Only

Elabscience®

Storage

Store at -20°C. Avoid freeze / thaw cycles.

Background

This gene encodes an enzyme that dephosphorylates myo-inositol monophosphate to generate free myo-inositol, a precursor of phosphatidylinositol, and is therefore an important modulator of intracellular signal transduction via the production of the second messengers myoinositol 1,4,5-trisphosphate and diacylglycerol. This enzyme can also use myo-inositol-1,3-diphosphate, myo-inositol-1,4-diphosphate, scyllo-inositol-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-1-phosphate, beta-glycerophosphate, and 2'-AMP as substrates. This enzyme shows magnesium-dependent phosphatase activity and is inhibited by therapeutic concentrations of lithium. Inhibition of inositol monophosphate hydroylosis and subsequent depletion of inositol for phosphatidylinositol synthesis may explain the antimanic and anti-depressive effects of lithium administered to treat bipolar disorder. Alternative splicing results in multiple transcript variants encoding distinct isoforms. A pseudogene of this gene is also present on chromosome 8q21.13.

For Research Use Only