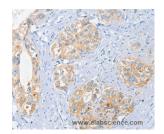

BRCA1 Polyclonal Antibody

Catalog No. E-AB-10188


Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description	
Reactivity	Human
Immunogen	Recombinant protein of human BRCA1
Host	Rabbit
Isotype	IgG
Purification	Affinity purification
Conjugation	Unconjugated
Buffer	PBS with 0.05% sodium azide and 50% glycerol, PH7.4
Applications	Recommended Dilution
IHC	1:50-1:200
Data	

Data

Immunohistochemistry of paraffin-embedded Human liver cancer tissue using BRCA1 Polyclonal Antibody at dilution 1:35

Immunohistochemistry of paraffin-embedded Human cervical cancer tissue using BRCA1 Polyclonal Antibody at dilution 1:35

Preparation & Storage

Storage

Store at -20°C. Avoid freeze / thaw cycles.

Background

This gene encodes a nuclear phosphoprotein that plays a role in maintaining genomic stability, and it also acts as a tumor suppressor. The encoded protein combines with other tumor suppressors, DNA damage sensors, and signal transducers to form a large multi-subunit protein complex known as the BRCA1-associated genome surveillance complex (BASC). This gene product associates with RNA polymerase II, and through the C-terminal domain, also interacts with histone deacetylase complexes. This protein thus plays a role in transcription, DNA repair of double-stranded breaks, and recombination. Mutations in this gene are responsible for approximately 40% of inherited breast cancers and more than 80% of inherited breast and ovarian cancers. Alternative splicing plays a role in modulating the subcellular localization and physiological function of this gene.

For Research Use Only