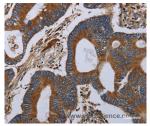
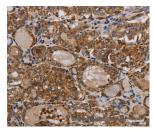
MT-ND6 Polyclonal Antibody


Catalog Number: E-AB-13428


Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description	
Reactivity	Human
Immunogen	Synthetic peptide of human MT-ND6
Host	Rabbit
Isotype	IgG
Purification	Affinity purification
Conjugation	Unconjugated
Formulation	PBS with 0.05% sodium azide and 50% glycerol, PH7.4
Applications	Recommended Dilution
IHC	1:50-1:200
Data	

Data

Immunohistochemistry of paraffin-embedded Human colon cancer tissue using MT-ND6 Polyclonal Antibody at dilution 1:40

Immunohistochemistry of paraffin-embedded Human thyroid cancer tissue using MT-ND6 Polyclonal Antibody at dilution 1:40

Preparation & Storage

Storage

Store at -20°C. Avoid freeze / thaw cycles.

Background

NADH:ubiquinone oxidoreductase (complex I) is an extremely complicated multiprotein complex located in the inner mitochondrial membrane. Human complex I is important for energy metabolism because its main function is to transport electrons from NADH to ubiquinone, which is accompanied by translocation of protons from the mitochondrial matrix to the intermembrane space. Human complex I appears to consist of 41 subunits. A small number of complex I subunits are the products of mitochondrial genes (subunits 1-7), while the remainder are nuclear encoded and imported from the cytoplasm. The significance of NADH dehydrogenase subunit 6 (ND6) is rapidly becoming increasingly apparent as many mutations leading to amino acid changes in this subunit are associated with known mitochondrial diseases.

For Research Use Only

A Reliable Research Partner in Life Science and Medicine Toll-free: 1-888-852-8623 Tel: 1-832-243-6086 Web: www.elabscience.com Email: techsupport@elabscience.com