

BAIAP2 Polyclonal Antibody

Catalog No. E-AB-14172

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description	
Reactivity	Human, Mouse, Rat
Immunogen	Recombinant protein of human BAIAP2
Host	Rabbit
Isotype	IgG
Purification	Affinity purification
Conjugation	Unconjugated
Buffer	PBS with 0.05% sodium azide and 50% glycerol, PH7.4
Applications	Recommended Dilution
WB	1:200-1:1000
IHC	1:50-1:200
Data	

Western Blot analysis of SKOV3 cell using BAIAP2 Polyclonal Antibody at dilution of 1:350 Calculated Mw:61kDa Immunohistochemistry of paraffin-embedded Human colon cancer using BAIAP2 Polyclonal Antibody at dilution of 1:30

Preparation & Storage

Storage

Store at -20°C. Avoid freeze / thaw cycles.

Background

The protein encoded by this gene has been identified as a brain-specific angiogenesis inhibitor (BAI1)-binding protein. This adaptor protein links membrane bound G-proteins to cytoplasmic effector proteins. This protein functions as an insulin receptor tyrosine kinase substrate and suggests a role for insulin in the central nervous system. It also associates with a downstream effector of Rho small G proteins, which is associated with the formation of stress fibers and cytokinesis. This protein is involved in lamellipodia and filopodia formation in motile cells and may affect neuronal growth-cone guidance. This protein has also been identified as interacting with the dentatorubral-pallidoluysian atrophy gene, which is associated with an autosomal dominant neurodegenerative disease. Alternative splicing results in multiple transcript variants encoding distinct isoforms.

For Research Use Only