Recombinant Human HAPLN1 Protein (His Tag)

Catalog No. PKSH031687

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description		
Synonyms	CRTL1	
Species	Human	
Expression Host	HEK293 Cells	
Sequence	Met 1-Asn 354	
Accession	NP_001875.1	
Calculated Molecular Weight	40 kDa	
Observed molecular weight	rved molecular weight 52 kDa	
Tag	C-His	
Bioactivity	Not validated for activity	
Properties		
Purity	> 90 % as determined by reducing SDS-PAGE.	
Endotoxin	< 1.0 EU per μ g of the protein as determined by the LAL method.	
Storage	Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80°C. Reconstituted protein solution can be stored at 4-8°C for 2-7 days. Aliquots of reconstituted samples are stable at < -20 °C for 3 months.	
Shipping	This product is provided as lyophilized powder which is shipped with ice packs.	
Formulation	Lyophilized from sterile PBS, pH 7.4 Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Please refer to the specific buffer information in the printed manual.	
Reconstitution	Please refer to the printed manual for detailed information.	
Dete	-	

Data

KDa	MK
116	and the second s
66.2	-
45.0	Elabsdenci
35.0	-
25.0	- Elabscie
18.4	-
14.4	

> 90 % as determined by reducing SDS-PAGE.

Background

Hyaluronan (HA) is a high MW glycosaminoglycan significantly involved in the formation and stability of extracellular matrix via its association with specific HA-binding proteins. HAPLN1, also known as CRTL1 (Cartilage Link Protein 1,

For Research Use Only

Toll-free: 1-888-852-8623 Web: <u>www.elabscience.com</u> Tel: 1-832-243-6086 Email: <u>techsupport@elabscience.com</u>

Elabscience®

cLP) and link protein, is a member of HA-binding protein (hyaladherins) family, and contains a common structural domain of about 100 amino acids that is termed a Link module with two α -helices and two antiparallel β -sheets. HAPLN1/CRTL1 stabilizes the interaction between hyaluronan (HA) and versican, two extracellular matrix components essential for cardiac development. Link module superfamily can be divided into three subgroups, and the HAPLN family are C domain-type proteins that have an extended structure with one N-terminal V-type Ig-like domain followed by two link modules. In cartilage, aggrecan forms - cLP stabilized aggregates with HA that provides the tissue with its load bearing properties. HAPLN1 is a component of follicular matrix, was shown to enhance cumulus-oocyte complex (COC) expansion in vitro. HAPLN1 may promote periovulatory granulosa cell survival, which would facilitate their differentiation into luteal cells.