

A Reliable Research Partner in Life Science and Medicine

Recombinant Mouse ERK2/MAPK1/MAPK2 Protein

Catalog No. PKSM040681

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description

Synonyms 9030612K14Rik;AA407128;AU018647;C78273;ERK;Erk2;MAPK2;p41mapk;p42

mapk;Prkm1;PRKM2

Species Mouse

Expression Host Baculovirus-Insect Cells

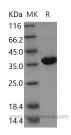
Sequence Met1-Ser358 Accession P63085 Calculated Molecular Weight 41.4 kDa Observed molecular weight 37 kDa Tag No tag

Properties

Purity > 95 % as determined by reducing SDS-PAGE.

Storage Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to

-80°C. Reconstituted protein solution can be stored at 4-8°C for 2-7 days. Aliquots


of reconstituted samples are stable at < -20°C for 3 months.

Shipping This product is provided as lyophilized powder which is shipped with ice packs.

Formulation Lyophilized from sterile 20mM Tris, 500mM NaCl, 10% gly, pH 8.0

Reconstitution Please refer to the printed manual for detailed information.

Data

Background

MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. ERK is a versatile protein kinase that regulates many cellular functions. Growing evidence suggests that extracellular signal-regulated protein kinase 1/2 (ERK1/2) plays a crucial role in promoting cell death in a variety of neuronal systems, including neurodegenerative diseases. It is believed that the magnitude and the duration of ERK1/2 activity determine its cellular function. Activation of ERK1/2 are implicated in

For Research Use Only

Toll-free: 1-888-852-8623 Tel: 1-832-243-6086 Fax: 1-832-243-6017 Email: techsupport@elabscience.com

Web: www.elabscience.com

Elabscience Bionovation Inc.

A Reliable Research Partner in Life Science and Medicine

the pathophysiology of spinal cord injury (SCI). ERK2 signaling is a novel target associated with the deleterious consequences of spinal injury. ERK-2, also known as Mitogen-activated protein kinase 1 (MAPK1), is a member of the protein kinase superfamily and MAP kinase subfamily. MKP-3 is a dual specificity phosphatase exclusively specific to MAPK1 for its substrate recognition and dephosphorylating activity. The activation of MAPK1 requires its phosphorylation by upstream kinases. Upon activation, MAPK1 translocates to the nucleus of the stimulated cells, where it phosphorylates nuclear targets. MAPK1 is involved in both the initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors such as ELK1. MAPK1 acts as a transcriptional repressor which represses the expression of interferon gamma-induced genes. Transcriptional activity is independent of kinase activity. The nuclear-cytoplasmic distribution of ERK2 is regulated in response to various stimuli and changes in cell context. Furthermore, the nuclear flux of ERK2 occurs by several energy- and carrierdependent and -independent mechanisms. ERK2 has been shown to translocate into and out of the nucleus by facilitated diffusion through the nuclear pore, interacting directly with proteins within the nuclear pore complex, as well as by karyopherin-mediated transport. ERK2 interacts with the PDE4 catalytic unit by binding to a KIM (kinase interaction motif) docking site located on an exposed beta-hairpin loop and an FQF (Phe-Gln-Phe) specificity site located on an exposed alpha-helix. These flank a site that allows phosphorylation by ERK, the functional outcome of which is orchestrated by the N-terminal UCR1/2 (upstream conserved region 1 and 2) modules.

For Research Use Only

Toll-free: 1-888-852-8623 Tel: 1-832-243-6086 Fax: 1-832-243-6017 Email: techsupport@elabscience.com

Web: www.elabscience.com