
LATS1 Polyclonal Antibody

Catalog No. E-AB-36542

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description	
Reactivity	Human,Mouse,Rat
Immunogen	Synthesized peptide derived from human LATS1/2
Host	Rabbit
Isotype	IgG
Purification	Affinity purification
Buffer	PBS with 0.02% sodium azide, 0.5% protective protein and 50% glycerol pH 7.4.
Applications	Recommended Dilution
WB	1:500-2000
ELISA	1:10000-20000
Data	

Western Blot analysis of HepG2, CACO2 cells using LATS1 Polyclonal Antibody at dilution of 1:1000. **Observed Mw:120kDa**

Preparation & Storage

Storage

Store at -20°C. Avoid freeze / thaw cycles.

Background

The protein encoded by this gene is a putative serine/threonine kinase that localizes to the mitotic apparatus and complexes with cell cycle controller CDC2 kinase in early mitosis. The protein is phosphorylated in a cell-cycle dependent manner, with late prophase phosphorylation remaining through metaphase. The N-terminal region of the protein binds CDC2 to form a complex showing reduced H1 histone kinase activity, indicating a role as a negative regulator of CDC2/cyclin A. In addition, the C-terminal kinase domain binds to its own N-terminal region, suggesting potential negative regulation through interference with complex formation via intramolecular binding. Biochemical and genetic data suggest a role as a tumor suppressor. This is supported by studies in knockout mice showing development of soft-tissue sarcomas, ovarian stromal cell tumors and a high sensitivity to carcinogenic treatments.