(KO Validated) MAPK3 Polyclonal Antibody (E-AB-60024)

-
-
-
- +1
For research use only.
Verified Samples |
Verified Samples in WB: DU145, HeLa Verified Samples in IHC: Rat lung, Human kidney, Mouse heart |
Dilution | WB 1:500-1:2000, IHC 1:50-1:200 |
Isotype | IgG |
Host | Rabbit |
Reactivity | Human, Mouse, Rat |
Applications | WB, IHC |
Clonality | Polyclonal |
Immunogen | A synthetic peptide of human MAPK3 (NP_002737.2). |
Abbre | MAPK3 |
Synonyms | ERK-1, ERK1, ERT2, HS44KDAP, HUMKER1A, MAPK3, P44ERK1, P44MAPK, PRKM3, p44-ERK1, p44-MAPK |
Swissprot | |
Calculated MW | 38 kDa/40 kDa/43 kDa |
Observed MW |
40 kDa
The actual band is not consistent with the expectation.
Western blotting is a method for detecting a certain protein in a complex sample based on the specific binding of antigen and antibody. Different proteins can be divided into bands based on different mobility rates. The mobility is affected by many factors, which may cause the observed band size to be inconsistent with the expected size. The common factors include: 1. Post-translational modifications: For example, modifications such as glycosylation, phosphorylation, methylation, and acetylation will increase the molecular weight of the protein. 2. Splicing variants: Different expression patterns of various mRNA splicing bodies may produce proteins of different sizes. 3. Post-translational cleavage: Many proteins are first synthesized into precursor proteins and then cleaved to form active forms, such as COL1A1. 4. Relative charge: the composition of amino acids (the proportion of charged amino acids and uncharged amino acids). 5. Formation of multimers: For example, in protein dimer, strong interactions between proteins can cause the bands to be larger. However, the use of reducing conditions can usually avoid the formation of multimers. If a protein in a sample has different modified forms at the same time, multiple bands may be detected on the membrane. |
Cellular Localization | Cytoskeleton, Cytosol, Endosome, early endosome, late endosome, Extracellular region or secreted, extracellular exosome, Golgi apparatus, Golgi apparatus, Mitochondrion, Nucleus, nuclear envelope, nucleoplasm, nucleus, Plasma Membrane, caveola, plasma membrane, Other locations: cytoplasm, focal adhesion, protein complex, pseudopodium. |
Concentration | 1 mg/mL |
Buffer | Phosphate buffered solution, pH 7.4, containing 0.05% stabilizer and 50% glycerol. |
Purification Method | Affinity purification |
Research Areas | Cancer, Neuroscience, Signal Transduction, Stem Cells |
Conjugation | Unconjugated |
Storage | Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles. |
Shipping | The product is shipped with ice pack,upon receipt,store it immediately at the temperature recommended. |
background | The protein encoded by this gene is a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act in a signaling cascade that regulates various cellular processes such as proliferation, differentiation, and cell cycle progression in response to a variety of extracellular signals. This kinase is activated by upstream kinases, resulting in its translocation to the nucleus where it phosphorylates nuclear targets. Alternatively spliced transcript variants encoding different protein isoforms have been described. |
Other Clones
{{antibodyDetailsPage.numTotal}} Results
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
Other Formats
{{formatDetailsPage.numTotal}} Results
Unconjugated
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
-
IF:{{item.impact}}
Journal:{{item.journal}} ({{item.year}})
DOI:{{item.doi}}Reactivity:{{item.species}}
Sample Type:{{item.organization}}
-
Q{{(FAQpage.currentPage - 1)*pageSize+index+1}}:{{item.name}}