Recombinant NF-κB1 p105/p50 Monoclonal Antibody (AN301362L)

For research use only.
Verified Samples | Verified Samples in WB: A20 |
Dilution | WB 1:2000-1:10000 |
Isotype | IgG,κ |
Host | Rabbit |
Reactivity | Human, Mouse, Rat |
Applications | WB |
Clonality | Monoclonal;Recombinant |
Immunogen | Recombinant Human NF-κB1 p105/p50 protein |
Abbre | NF-κB1 p105/p50 |
Synonyms | NFKB, Nfkb1, EBP-1, KBF1, NF-Kappa-B, NF-KB1, NFKB-p105, NFKB-p50, p105, p50, NFKB1 |
Swissprot | |
Calculated MW | 50 kDa,105 kDa |
Observed MW |
50 kDa,120 kDa
The actual band is not consistent with the expectation.
Western blotting is a method for detecting a certain protein in a complex sample based on the specific binding of antigen and antibody. Different proteins can be divided into bands based on different mobility rates. The mobility is affected by many factors, which may cause the observed band size to be inconsistent with the expected size. The common factors include: 1. Post-translational modifications: For example, modifications such as glycosylation, phosphorylation, methylation, and acetylation will increase the molecular weight of the protein. 2. Splicing variants: Different expression patterns of various mRNA splicing bodies may produce proteins of different sizes. 3. Post-translational cleavage: Many proteins are first synthesized into precursor proteins and then cleaved to form active forms, such as COL1A1. 4. Relative charge: the composition of amino acids (the proportion of charged amino acids and uncharged amino acids). 5. Formation of multimers: For example, in protein dimer, strong interactions between proteins can cause the bands to be larger. However, the use of reducing conditions can usually avoid the formation of multimers. If a protein in a sample has different modified forms at the same time, multiple bands may be detected on the membrane. |
Cellular Localization | Cytoplasm, Nucleus |
Concentration | 0.2 mg/mL |
Buffer | PBS, 50% glycerol, 0.05% Proclin 300, 0.05% protein protectant. |
Purification Method | Protein A |
Clone No. | 4F9 |
Conjugation | Unconjugated |
Storage | Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles. |
Shipping | Ice bag |
background | Nuclear factor kappa B subunit 1(NFKB1) Homo sapiens This gene encodes a 105 kD protein which can undergo cotranslational processing by the 26S proteasome to produce a 50 kD protein. The 105 kD protein is a Rel protein-specific transcription inhibitor and the 50 kD protein is a DNA binding subunit of the NF-kappa-B (NFKB) protein complex. NFKB is a transcription regulator that is activated by various intra- and extra-cellular stimuli such as cytokines, oxidant-free radicals, ultraviolet irradiation, and bacterial or viral products. Activated NFKB translocates into the nucleus and stimulates the expression of genes involved in a wide variety of biological functions. Inappropriate activation of NFKB has been associated with a number of inflammatory diseases while persistent inhibition of NFKB leads to inappropriate immune cell development or delayed cell growth. |
Other Clones
{{antibodyDetailsPage.numTotal}} Results
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
Other Formats
{{formatDetailsPage.numTotal}} Results
Unconjugated
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
-
IF:{{item.impact}}
Journal:{{item.journal}} ({{item.year}})
DOI:{{item.doi}}Reactivity:{{item.species}}
Sample Type:{{item.organization}}
-
Q{{(FAQpage.currentPage - 1)*pageSize+index+1}}:{{item.name}}
